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Abstract: -Order-preserving sub matrices (OPSM's) have been shown useful in capturing concurrent patterns 

in data when the relative magnitudes of data items are more important than their exact values. For example, in 

analyzing gene expression profiles obtained from micro-array experiments, the relative magnitudes are 

important both since they represent the change of gene activities across the experiments, and since there is 

typically a high level of noise in data that makes the exact values un-trustable. To manage with data noise, 

repeated experiments are often conducted to collect multiple measurements. 
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I. INTRODUCTION 
In bioinformatics community, a large number of 

genes are studied by using DNA micro-array 

technology to obtain gene expression data. Gene 

expression data are usually organized as matrices, in 

which each row represents one gene and each column 

represents a sample for the experiment, and each item 

records the expression value of one gene under an 

experiment sample. Through the analysis of 

expression data, we can discover information about 

the genes. 

Clustering is helpful to find different functional 

categories of genes. Among various kinds of 

clustering approaches, Order-Preserving Sub Matrix 

has been a useful method to discover groups of genes 

that share some common functions. 

Simultaneous clustering, usually designated by bi-

clustering, co-clustering, 2-way clustering or block 

clustering, is an important method in two-way data 

analysis. A number of algorithms that perform 

simultaneous clustering on rows and columns of a 

matrix have been proposed to date. The goal of 

simultaneous clustering is to find sub-matrices, which 

are subgroups of rows and subgroups of columns that 

exhibit a high correlation. This type of algorithms has 

been proposed and used in many fields, such as bio-

informatics [1], web mining [2], text mining [3] and 

social network analysis [4]. 

 

II. OVERVIEW OF SIMULTANEOUS 

CLUSTERING PROBLEM 
Clustering is the grouping together of similar 

subjects. Standard clustering methods consider the 

value of each point in all dimensions, in order to form 

group of similar points. This kind of one-way 

clustering techniques is based on similarity between 

subjects across all variables. 

 

Simultaneous clustering algorithms seeks ―blocks‖ of 

rows and columns thatare interrelated. They aim to 

identify a set of bi-clusters Bk(Ik, Jk), where Ik 

is a subset of the rows X and Jk is a subset of the 

columns Y. Ik rows exhibit similar behavior across Jk 

columns, or vice versa and every bi-cluster Bk 

satisfies some criteria of homogeneity. A bi-

clustering method may assume a specificstructure and 

data type. Madeira and Oliveira launch in their survey 

[5]some bi-clustering structures defined by: single bi-

cluster, exclusive rows bi-clusters, exclusive columns 

bi-clusters, non overlapping bi-clusters with tree 

arrangement, and arbitrarily positioned overlapping 

bi-clusters. Bi-clusters can be with constantvalues, 

with constant values on rows or columns, with 

coherent values or withcoherent evolution. There are 

many advantages in a simultaneous rather thanone 

way clustering (table 1). In fact, simultaneous 

clustering may highlight the association between the 

row and column clustering that appears from the 

dataanalysis as a linked clustering. in addition, it 

allows the researcher to deal withsparse and high 

dimensional data matrices [6]. Simultaneous 

clustering is alsoan interesting paradigm for 

unsupervised data analysis as it is more useful, has 

less parameters, is scalable and is able to effectively 

interlink row and column information. 

 

Table 1. Comparison between Clustering and 

Simultaneous clustering 

Clustering  Simultaneous Clustering 

Applied to each the 

rows or the columns of 

the data matrix 

separately 

⇒Global model.  

performs clustering in the 

two dimensions 

simultaneously 

⇒Local model. 

produce clusters of rows 

or clusters of columns. 

seeks blocks of rows and 

columns that are 
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interrelated. 

Each subject in a given 

subject cluster is 

defined using all the 

variables. Each variable 

in a variable cluster 

characterizes all 

subjects. 

Each subject in a bi-

cluster is selected using 

only a subset of the 

variables and each 

variable in a bi-cluster is 

selected using only a 

subset of the subjects. 

Clusters are exhaustive The clusters on rows and 

columns should 

not be exclusive and/or 

exhaustive 

 

Simultaneous Clustering Approaches  

A survey of simultaneous clustering 

algorithms applied on biological data has been given 

by Madeira and Oliveira. These algorithms are based 

on five approaches: Iterative Row and Column 

Clustering Combination (IRCCC), Divide and 

Conquer (DC), Greedy Iterative Search (GIS), 

Exhaustive Bi-cluster Enumeration (EBE) and 

Distribution Parameter Identification (DPI). The 

IRCCC approach consists to apply clustering 

algorithms to the rows and columns of the data 

matrix, independently, and then to combine results 

using some sort of iterative process The algorithms 

based on DC approach begin with the entire data in 

one block (bi-cluster) and identifies bi-clusters at 

each iteration by splicing a given block into two 

pieces. GIS approach creates bi-clusters by adding or 

removing rows/columns from them, using a criterion 

that maximizes the local increase EBE approach 

identifies bi-clusters using an exhaustive enumeration 

of all possible bi-clusters in the data matrix. DPI 

approach assumes that the bi-clusters are generated 

using a given statistical model and tries to identify the 

distribution parameters that fit the available data, by 

minimizing a certain criterion through an iterative 

move toward All the algorithms presented in this 

survey analyze biological data from gene expression 

matrices. Given that there are a number of algorithms 

based on bipartite graph model [7], mixture model [8] 

and information theory [9], which are applied in other 

fields such as text mining, web mining and 

information recovery, we propose to categorize 

simultaneous clustering methods into five categories: 

bipartite Graph methods, variance minimization 

techniques, two-way clustering methods, motif and 

pattern recognition methods and probabilistic and 

generative methods. 

The bipartite graph methods consists in 

modeling rows and columns as a weighted bipartite 

graph and assigning weights to graph edges using 

similarity measure methods. The created bipartite 

graph is then partitioned in a way that minimizes the 

cut of the divider i.e. the sum of the weights of the 

crossing edges between parts of the partition. In [10], 

the authors created a word-document bipartite graph. 

The graph was partitioned using a partial singular 

value decomposition of the associated edge weight 

matrix of the bipartite graph. Dhillon [11] used the 

spectral method for partitioning the bipartite graph 

constructed in the same way as in [12]. Authors 

proposed an isoperimetric co-clustering algorithm 

(ICA) for partitioning the word file matrix. ICA used 

the same model than spectral partitioning but instead 

of searching the solutions of the singular word-

document system of linear equations, it converts the 

scheme to a nonsingular system of equations which is 

easier to solve. The bipartite graph techniques are 

also used for gene expression analysis. One case is 

Statistical-Algorithmic Method for Bi-cluster 

Analysis (SAMBA). 

The variance minimization methods define 

clusters as blocks in the matrix with minimal 

deviation of their elements. This definition has been 

already measured by Hartiganand extended by 

Tibshirani et al. Some examples are the δ-cluster 

methods, such as δ-ks clusters, δ-p Clusters and δ-bi-

clusters, which search for blocks of elements having a 

deviation below δ. flexible Overlapped bi-Clustering 

(FLOC) introduced by extend Cheng and Church δ-

bi-clusters by dealing with missing values. – Two-

way clustering methods use one-way clustering such 

as k-means Self-Organizing Maps, Expectation-

Minimization algorithm or hierarchical clustering 

algorithm to produce clusters on both dimensions of 

the data matrix separately. One-dimension results are 

then combined to produce subgroups of rows and 

columns called bi-clusters. These methods identify 

clusters on rows and columns but not directly bi-

clusters. 

Motif and pattern recognition methods 

define a bi-cluster as samples sharing a common 

prototype or motif. To simplify this task, some 

methods discretize the data such as xMOTIF [13] or 

binarize the data such as Bimax [14]. Order-

Preserving Sub Matrices (OPSM) [15] searches for 

blocks having the same order of values in their 

columns. Spectral clustering (SPEC) [16] performs a 

singular value decomposition of the data matrix after 

normalization. Contiguous column coherent (CCC bi-

clustering) [17] is a method for gene expression time 

series, which finds patterns in nearby columns. 

Probabilistic and generative methods use 

model-based techniques to define bi-clusters [18]. 

Probabilistic Relational Models (PRMs) [19] and 

their extension ProBic [20] are fully generative 

models that combine probabilistic modeling and 

relational logic. C Monkey [21] is a generative 

approach which models biclusters by Markov chain 

processes. GU and Liu [22] generalized the plaid 

models proposed in [23] to fully generative models 

called Bayesian BiClustering model (BBC). The 
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latter models introduced in [24] is generative models 

which have the advantage that they select models 

using well-understood model selection techniques 

such as maximum likelihood. Costa et al. [25] 

introduced a hierarchical model-based co-clustering 

algorithm. In their method the co-occurrence matrix 

is characterized in probabilistic terms, by estimating 

the joint distribution between rows and columns. 

 

III. STUDY ON MINING ORDER-

PRESERVING SUB MATRICES 
Order-Preserving Sub matrix (OPSM) is a 

data pattern particularly useful for discovering trends 

in noisy data. The OPSM problem applies to a matrix 

of numerical data values. The objective is to discover 

a subset of attributes (columns) over which a subset 

of tuples (rows) exhibit similar rises and falls in the 

tuples’ values. For instance, when analyzing gene 

expression data from microarray experiments, genes 

(rows) with concurrent changes of mRNA expression 

levels across different time points (columns) may 

share the same cell-cycle related properties [26]. Due 

to the high level of noise in typical microarray data, it 

is typically more meaningful to compare the relative 

expression levels of different genes at different time 

points rather than their total values. Genes that 

exhibit simultaneous rises and falls of their 

expression values across different time points or 

experiments reveal interesting patterns and 

knowledge.  

The original OPSM problem was first 

proposed by Ben-Dor and company. [27]: 

 

Definition 1: Given an n _ m matrix (dataset) D, an 

order-preserving sub matrix (OPSM) is a pair (R; P), 

where R is a subset of the n rows (represented by a 

set of row ids) and P is a permutation of a subset of 

the m columns (represented by a sequence of column 

ids) such that for each row in R, the data values are 

monotonically increasing with respect to P, i.e., 

DiPj< DiPj0 ; 8i 2 R; 1 _ j < j0 _ jPj, where Drc 

denotes the value at row r and column c of D. 

TABLE 1 

A dataset without repeated measurements 

 A b c d 

row 1 49 38 115 82 

row 2 67 96 124 48 

row 3 65 67 132 95 

row 4 81 115 133 62 

 

For example, Table 1 shows a dataset with 4 

rows and 4 columns. The values of rows 2, 3 and 4 

rise from a tob, so ({2, 3, 4}, <a, b>) is an OPSM. For 

simplicity, in this study we assume that all values in a 

row are unique. 

We say that a row supports a permutation if 

its values increase monotonically with respect to the 

permutation. In the above example, rows 2, 3 and 4 

support the permutation <a, b>, but row 1 does not. 

For a fixed dataset, the rows that support a 

permutation can be unambiguously identified. In the 

following discussion, we will refer to an OPSM 

simply by its variation which will also be called a 

pattern. 

An OPSM is said to be frequent if the 

number of supporting rows is not less than a support 

threshold, ρ. Given a dataset, the basic OPSM mining 

problem is to identify all frequent OPSM’s. In the 

gene expression context, these OPSM’s correspond to 

groups of genes that have similar activity patterns, 

which may suggest shared regulatory mechanisms 

and/or protein functions. In microarray experiments, 

each value in the dataset is a physical measurement 

subject to different kinds of errors. A drawback of the 

basic OPSM mining problem is that it is sensitive to 

noisy data. In our previous example, if the value of 

column a is slightly increased in row 3, say from 65 

to 69, then row 3 will no longer support the pattern 

<a, b>, but will support <b, a>instead. 

To combat errors, experiments are often 

repeated and multiple measured values (called 

replicates) are recorded. The replicates allow a better 

estimate of the actual physical quantity. certainly as 

the cost of microarray experiments has been 

dropping, research groups have been obtaining 

replicates to strike for higher data quality. For 

example, in some of the microarray datasets we use in 

our study, each experiment is repeated 3 times to 

produce 3 measurements of every data point. Studies 

have clearly shown the importance of having multiple 

replicates in improving data quality. 

TABLE 2 

A dataset with repeated measurements 

 a

1 

a

2 

a3 b1 b2 b

3 

c1 c2 c3 d

1 

d

2 

d

3 

r

o

w

 

1 

4

9 

5

5 

80 38 51 8

1 

11

5 

10

1 

79 8

2 

1

1

0 

5

0 

r

o

w

 

2 

6

7 

5

4 

13

0 

96 85 8

2 

12

4 

92 94 4

8 

3

7 

3

2 

r

o

w

 

3 

6

5 

4

9 

62 67 39 2

8 

13

2 

11

9 

83 9

5 

8

9 

6

4 

r

o

w

 

8

1 

8

3 

10

5 

11

5 

11

0 

8

7 

13

3 

10

8 

10

5 

6

2 

5

2 

5

1 
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Different replicates, however, may support 

different OPSM’s. For example, Table 2 shows a 

dataset with two more replicates added per 

experiment. From this dataset, we see that it is no 

longer clear whether row 3 supports the <a, 

b>pattern. For instance, while the replicates a1, b1 

support the pattern, the replicates a1, b2 do not. 

Our example illustrates that the original OPSM 

definition is not robust against noisy data. It also fails 

to take advantage of the additional information 

provided by replicates. There is thus a need to modify 

the definition of OPSM to handle repeated 

measurements. Such a definition should satisfy the 

following requirements: 

1) If a pattern is supported by all combinations of 

the replicates of a row, the row should 

contribute a high support to the pattern. For 

example, for row 3, the values of column b are 

clearly smaller than those of column c. All 3 × 

3 = 9 replicate combinations of b and c values 

(b1, c1), (b1, c2)... (b3, c3) support the <b, 

c>pattern. Row 3 should thus strongly support 

<b, c>. 

2) If the value of a replicate largely deviates from 

other replicates, it is most likely due to error. 

The replicate should not severely affect the 

support of a given pattern. For example, we see 

that row 2 generally supports the pattern <a, 

c>if we ignore a3, which is abnormally large 

(130) when compared to a1 (67) and a2 (54), 

and is thus likely an error. The support of <a, 

c>contributed by row 2 should only be mildly 

reduced due to the presence of a3. 

3) If the replicates largely disagree on their 

support of a pattern, the overall support should 

reflect the uncertainty. For example, in row 4, 

the values of b and c are mingled. Thus, row 4 

should neither strongly support <b,c>nor <c,b>. 

The first two requirements can be satisfied 

by summarizing the replicates by robust statistics 

such as medians, and mining the resulting dataset 

using the original definition of OPSM. However, the 

third requirement cannot be satisfied by any single 

summarizing statistic. This is because under the 

original definition, a row can only either fully support 

or fully not support a pattern, and thus the 

information of uncertainty is lost. To tackle this 

problem, we propose a new definition of OPSM and 

the corresponding mining problem based on the 

concept of fractional support: 

 

Definition 2: The partial support si(P) of a pattern P 

contributed by a row i is the number of replicate 

combinations of row i that support the pattern, 

divided by the total number of replicate combinations 

of the columns in P. 

For example, for row 1, the pattern <a,b,d>is 

supported by 8 replicate combinations: ha1,b2,d1i, 

ha1,b2,d2i, ha1,b3,d1i, ha1,b3,d2i, ha2,b3,d1i, ha2,b3,d2i, 

ha3,b3,d1i, and ha3,b3,d2i out of 3
3 

= 27 possible 

combinations. The fractional support s1 (<a,b,d>) is 

therefore 8/27. We use sni(P) and sdi(P) to denote the 

numerator and the denominator of si(P), respectively. 

In our example, sn1(<a,b,d>) = 8 and sd1(<a,b,d>) = 

27. 

If we use fractional support to indicate how 

much a row supports an OPSM, all the three 

requirements we stated above are satisfied. Firstly, if 

all replicate combinations of a row support a certain 

pattern, the fractional support contributed will be one, 

the maximum fractional support. Secondly, if one 

replicate of a column j deviates from the others, the 

replicate can at most change the fractional support by

, where r (j) is the number of replicates of column 

j. This has small effects when the number of 

replicates r (j) is large. Finally, if only a fraction of 

the replicate combinations supports a pattern, the 

resulting fractional support will be fuzzy (away from 

0 and 1), which reflects the doubt 

Based on the definition of fractional support, 

the support of a pattern P is defined as the sum of the 

fractional supports of P contributed by all the rows: s 

(P) = 
P

i si(P). A pattern P is frequent if its support is 

not less than a given support threshold ρ. Our new 

OPSM mining problem OPSM-RM (OPSM with 

repeated measurements) is to identify all frequent 

patterns in a data matrix with replicates: 

 

Definition 3:Given a dataset, the OPSM-RM 

difficulty asks for the set of all OPSMs each of which 

having a total fractional support from all rows not less 

than a given support threshold. 

From the definition of fractional support, we can 

observe the combinatorial nature of the OPSM-RM 

problem — the number of replicate combinations 

grows exponentially with respect to the pattern 

length. The objective of this work is to derive 

efficient algorithms for mining OPSM-RM. By 

proving a number of interesting properties and 

theorems, we propose pruning techniques that can 

significantly reduce mining time [28]. 

 

IV. OVERVIEW OF DATASET 
The readout of a DNA chip containing n 

genes consists of n real numbers that represent the 

expression level of each gene, either as an complete 

or as a relative quantity (with respect to some 

reference). When the readouts for m experiments 

(tissues) are joint, each gene yields a vector of m real 

numbers.  
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Table 1. The Ranks of the Three Genes g1;g2;g3 

Induce a Common Permutation When Restricted 

to Columns t1;t2;t3;t4;t5 

Gene n 

tissue 

t1 t2 t3 t4 t5 

g1 7 13 19 2 50 

      

g2 19 23 39 6 42 

g3 4 6 8 2 10 

Induced 

permutation 

2 3 4 1 5 

 

To make our results independent of the 

scaling of the data, we think only the relative ordering 

of the expression levels for each gene, as different to 

the correct values. This motivates us to consider the 

permutation induced on the m numbers by sorting 

them. so, we view the expressed data matrix, D, as an 

n-by-m matrix, where each row corresponds to a gene 

and each column to an experiment. The m entries in 

each row are a permutation of the numbers {1… m}. 

The (I, j) entry is the rank of the readout of gene iin 

tissue j, out of the m readouts of this gene. 

characteristic values for n and m are in the ranges 500 

≤n ≤15,000 and 10 ≤ m ≤150. 

The computational task we address is the 

identification of large order-preserving sub matrices 

(OPSMs) in an n x m matrix D. A sub matrix is order 

preserving if there is a permutation of its columns 

under which the sequence of values in every row is 

strictly increasing. In the case of expression data, 

such a sub matrix is determined by a set of genes G 

and a set of tissues T such that, within the set of 

tissues T, the term levels of all the genes in G have 

the same linear ordering. 

 

V. Conclusion 
In this paper we review Order-preserving 

sub matrices (OPSM's) which is useful in capturing 

concurrent patterns in data when the relative 

magnitudes of data items are more important than 

their exact values. To cope with data noise, repeated 

experiments are often conducted to collect multiple 

measurements. We also review some basic methods 

of Simultaneous Clustering Problem. 
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